Use of PCR-RFLP and PCR-HWP1 for Identification of Candida Species Isolated From Cystic Fibrosis Patients

Peyman Solimani¹, Samira Salari¹, Soheila Khalizadeh², Maryam Hassanzad³, Sadegh Khodavaisy³,⁴, Hamed Fakhim Hajiaghaei⁵, Hamid Badali *⁶,⁷

¹Department of Medical Mycology and Parasitology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
²Pediatric Respiratory Diseases Research Center, NRITLD, Mash Danyeshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
³Department of Medical Mycology and Parasitology, Kurdistan University of Medical Sciences, Sanandaj, Iran.
⁴Department of Medical Mycology and Parasitology, Tehran University of Medical Sciences, Tehran, Iran.
⁵Invasive Fungi Research Centre (IFRC)/Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
⁶Department of Medical Mycology and Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
⁷Molecular and Cell Biology Research Centre (MCBRC), Mazandaran University of Medical Sciences, Sari, Iran

Received: 4 Mar 2014
Revised: 1 May 2014
Accepted: 20 May 2014

Abstract

Background: Due to the predisposing conditions in patients with cystic fibrosis (CF) caused by defective mucociliary clearance facilitates of colonization and invasion with Candida species has dramatically increased. Traditional methods for identification problems are imminent and are time-consuming. Therefore, molecular techniques utilizing amplification of target DNA provide quick and precise methods for diagnosis and identification of Candida species. Therefore, the aim of current study was identification of the most medically common isolated Candida species from the air way of CF patients by PCR-RFLP and amplification of HWP1 gene.

Materials and Methods: A total of 42 CF patients presenting symptoms referred to pediatric respiratory diseases research center were screened for the presence of Candida spp. The isolates initially were phenotypically identified and confirmed by molecular approaches based on restriction fragment length polymorphism (PCR-RFLP) for discrimination of C. albicans of non albicans and amplification of HWP1 gene for discrimination of C. albicans from C. dubliniensis and C. africana was conducted.

Results: Results show that C. albicans was the most frequently isolated species (83.8%) followed by non-albicans included C. parapsilosis (7.1%), C. glabrata (3.2%), and C. tropicalis (3.2%). The restriction patterns of each Candida species were perfectly specific. Since MspI is not able to discriminate between three morphological related species, C. albicans, C. dubliniensis and C. africana, we used PCR amplification of HWP1 gene, which (7.1%) species from C. albicans identified as C. dubliniensis, however C. africana strains were not found.

Discussion: The present study found that C. albicans as predominant species isolated from the CF patients. It can be concluded that molecular diagnostic methods are reliable and would be useful for identification of medically important Candida species in clinical samples. Therefore considerable attention has been paid to prevention and treatment of microbial growth, which has resulted in improvement of patient management.

Keywords: Candida species, PCR-RFLP, HWP1 gene, Cystic fibrosis

Introduction

Cystic fibrosis (CF) is an autosomal recessive disorder that causes abnormalities of ion transport of epithelial cells and presents as a multisystem disease (1, 2). The airways of CF patients are colonized by pathogenic micro-organisms and the most patients experience recurrent acute respiratory episodes (3). Understanding the microbial flora of the CF respiratory tract is of considerable importance, as patient morbidity and death are primarily caused by
chronic respiratory infections (4). Most studies of CF pathogens have focused on four major bacterial species. Also, both yeasts and filamentous fungi have been identified as microbial pathogens in CF (5, 6, 7). One particular fungal genus isolated at high frequencies from sputum culture is *Candida* and some studies have shown that airway colonization with *Candida* may cause symptoms in CF patients (8). The frequent use of broad-spectrum antibiotics, impaired salivary secretion, the use of corticosteroid treatments, and CF-related diabetes predisposes CF patients to colonization of the upper and lower airways with *Candida* spp. (9-11). It is still controversial whether *Candida* species are transient or persistent colonizers of the airways or more simply an oral carriage (12). Due to the predisposing conditions of *Candida* colonization in these patients, identification and discrimination of ethological agents for early treatment, and preventing the invasion is highly recommended. Therefore, due to the high degree of phenotypic similarity between *Candida* species, identification problems are imminent. Conventional approaches for identification down to the species level are based on morphological and physiological criteria, need several days or weeks to be concluded, and are frequently unspecific. However, today molecular tools are well established. Sequencing of the partial ribosomal operon is relatively expensive. Therefore, alternative molecular assay with high specificity, reproducibility and sensitivity are necessary. Thus the objective of this study was to identification of commonly *Candida* species isolated from CF patients by using both polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay and amplification of *HWPI* gene.

Materials and Methods

Yeast isolates

From February 2012 through April, Forty-two CF patients were surveyed for colonization of their air way by *Candida* species. Sputum samples were collected from these patients during routine clinical visits or during an admission to the respiratory disease research center in Masih Daneshvari Hospital (Tehran, Iran). The specimens were inoculated onto Sabouraud dextrose agar containing antibiotics, and incubated at 37°C for 2 days. Yeast growth was semi quantitatively noted as none, light (<10 colonies), moderate (10–50 colonies), or heavy (>50 colonies). Primarily, these strains were identified by phenotypic methods such as colony color on CHROMagar *Candida* medium (CHROMagar Company, Paris, France), germ-tube tests in serum at 37 °C for 2–3 h, microscopic morphology on corn-meal agar (DIFCO laboratories, Detroit, Mich., USA) with 1% tween 80. One colony on each identification strains was subcultured for molecular identification.

DNA Extraction

Genomic DNA was extracted, using the method of glass bead disruption (13). Briefly, 300 µL of lysis buffer (10 mM Tris, 1 mM EDTA (pH 8), 1% SDS, 100 mM NaCl, 2% triton X-100), 300 µL of phenol-chloroform (1:1) solution and equal to 300 µL of 0.5 mm diameter glass beads, were added to yeast. After 5 min of vigorous shaking which followed by 5 min centrifugation at 10000 rpm, the supernatant was isolated and transferred to a new tube and equal volume of chloroform was added, mixed gently, centrifuged and its supernatant was transferred to a new tube. For alcohol precipitation, 0.1 mL volume sodium acetate (pH 5.2) and 2.5 mL volume of cold absolute ethanol were added and the mixture was gently shaken and centrifuged at 10000 rpm for 10 min at 4°C. After washing with 70% ethanol, the pellets resuspended in 100 µL TE buffer (10 mM Tris, 1 mM EDTA) and were stored at -20°C prior to use.

RCR- RFLP analysis

The PCR-RFLP method was performed as previously described. Briefly, PCR amplification of ITS1-5.8S-ITS2 rDNA regions was achieved using the universal primers ITS1 (5′-TCC GTA GGT GAA CCT GCG G-3′ and ITS4 (5′-TCC TCC GCT TAT TGA TAT GC-3′) (MWG-Biotech AG, Germany). To amplify ITS domains, PCR amplification was performed in a final volume of 50 µl. Each reaction consists of 2 µl template DNA, 0.5 µl of each primer at 25 pmol, 1.25 µl of dNTP (BIORON GmbH, Germany) at 5 mM, 0.5U Taq DNA polymerase (Roche Diagnostics GmbH, Mannheim, Germany) and 5 µl 10x PCR buffer. The amplification parameters consist of 35 cycles of denaturation at 94°C for 1 min, annealing at 56°C for 1 min, extension at 72°C for 1 min. In the first cycle, the denaturation step was 94°C for 5 min and in the final cycle the final extension step was 72°C for 7 min. Subsequently, PCR products were digested in a final reaction volume of 15µl containing 3 µl water, 1.5µl buffer, 1U of restriction enzyme *MspI* and 10 µl PCR product at 37°C for 2h. Amplified and digested products were visualized by 1.5% and 2% agarose gel electrophoresis in TBE buffer (0.09 M Tris, 0.09 M boric acid and 2 mM EDTA, pH 8.3) respectively, and stained with ethidium bromide (0.5 µg/ml) and photographed. The size of DNA fragments determined directly with comparison of molecular size marker and distinct banding patterns which demonstrated in similar studies.
PCR-HWP1 for Discrimination of C. albicans complex

Definitive species identification and discrimination of all members of the C. albicans species complex (C. albicans, C. dubliniensis, C. africana, and C. stellatoidea) was performed by the amplification of the hyphal wall protein 1 (HWP1) gene as described by Romeo and Criseo (14). PCR amplification of HWP1 gene was achieved using the forward, 5’-GCTACCACTTCAGAAATCATCATC-3’ and reverse, 5’-GCACCTTCAGTCTGAGACG-3’ primer pairs. The method also identifies because it produces 3 different DNA fragments: approximately 700 bp for C. africana, 941 bp for C. albicans, and 569 for C. dubliniensis.

Sequence analysis of ITSr DNA region

Randomly for confirmation the identity of the species sequenced. Sequence analysis of ITS1 and ITS2 regions of the rDNA was performed according to Lott et al. [17] by the company MWG (Eurofins MWG Operon, Ebersberg, Germany) with a Big Dye Terminator Cycle Sequencing Kit on an ABI 3730 Genetic Analyzer (Pleasanton, CA, USA). The sequences generated were compared to available data in the NCBI database using the Basic Local Alignment Search Tool (BLASTn) (http://www.ncbi.nlm.nih.gov/).

Results

After the digestion with MspI enzyme the results were evaluated based on the sizes of PCR products for Candida species, i.e., 297, 238 bp for C. albicans; 557, 314 bp for C. glabrata; 340, 184 bp for C. tropicalis; 261, 249 for C. krusei; 520 bp for C. parapsilosis. The ITS regions of all tested isolates were successfully amplified. The digestion of ITS region of Candida species by MspI enzyme created bands for C. albicans, C. glabrata, and C. tropicalis. For C. parapsilosis, the size of the PCR and digestion product was similar (Figure 1).

Figure 1 demonstrates the patterns of ITS-RFLP for Candida strains after digestion with MspI. As shown, the fragment lengths were exactly the same as the estimated sizes in the computational sequence analysis. Results show that C. albicans was the most frequently isolated species (83.8%) followed by non-albicans included C. parapsilosis (7.1%), C. glabrata (3.2%), and C. tropicalis (3.2%). The restriction patterns of each Candida species were perfectly specific. Since MspI is not able to discriminate between three morphological similar species, C. albicans, C. dubliniensis and C. africana, we used PCR amplification of HWP1 gene, which (7.1%) species from C. albicans identified as C. dubliniensis; however C. africana strains were not found (Figure 2).

Discussion

Although recently molecular approaches have been developed for the identification and discrimination of Candida species, novel techniques for the diagnosis based on species level have been established in routine laboratories. These tools are crucially required for the identification of Candida species to reduce morbidity and mortality, and for the treatment of patients suffering from candidiasis. Given the
recent evidence that *Candida* species would be of clinical impact on respiratory function in patient with CF (15-17), we investigated to know the prevalence of *Candida* species in sputum samples from CF patients using the PCR-RFLP method. Consistent with the results of previous studies, the overall *Candida* colonization rate was high in our study group (8, 11, 12). A striking result of this study is that *C. albicans* as predominant species isolated from CF patients. Prior studies showed that *C. albicans* was the most frequent species in the CF patients (18, 19), although, it remains controversial as to whether *Candida* species are transient or persistent colonizers of the respiratory tract in CF (8). However, the regular assessment of airway colonization is one of the basic guidelines in clinical follow-up of these patients. Newer airway *Candida* species for example *C. dubliniensis* also emerged over the last decade (20). This new organism was subsequently described in the non-HIV population particularly in individuals receiving high antibiotic burdens such as CF patients (21-23). The present study found that 7.1% of *Candida* species isolated from CF patients identified as *C. dubliniensis*. In this study, molecular analysis performed by amplification of the *HWP1* gene showed that 7.1% of *Candida* species isolated from CF patients identified as *C. dubliniensis*. Molecular diagnostic provide a rapid and frequently highly discriminatory means of identifying infectious organisms (24). Use of a PCR-RFLP method to identifying infectious organisms is a rapid, almost inexpensive and completely valid method for identification of *Candida* spp. This method is useful for clinical and epidemiological investigation both mucocutaneous and systemic forms (25). In this study, we apply a PCR-RFLP method to identify the medically important *Candida* species and similar to other studies, the same results were obtained PCR-RFLP methods in detecting different *Candida* spp. (24, 26, 27). In conclusion, in this study we found that CF patients are often colonized with *Candida* species and *C. albicans* as predominant species isolated from this patients. It can be concluded that molecular diagnostic methods are reliable and would be useful for identification of medically important *Candida* species in clinical samples.

Acknowledgements

The authors are acknowledged the staff of Masih Daneshvari Hospital and the respiratory disease research center for help in technical assistance for sampling.
decline and hospital-treated exacerbations in cystic fibrosis. Chest, 2010; 138: 1186–1195. PMID: 20472859

